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1. Introduction

Binary Lie algebras (BL-algebras) were introduced by A.I. Malcev [8] as anticommu-

tative algebras in which any two elements generate a Lie subalgebra. This property is

fulfilled in Malcev algebras, defined in the same paper (under the name of Moufang-Lie

algebras) as the algebras satisfying the identities
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Ty = —Yyzr,
J(xy, z,2) = J(y, 2z, x)x,

where J(z,y, z) = (zvy)z + (y2z)z + (22)y denotes the jacobian of the elements x,y, 2.
Laterly, A.T. Gainov [3] characterized binary Lie algebras by identities: an anticom-
mutative algebra is a binary Lie algebra if and only if it satisfies the identity

J(zy, z,y) = 0. (1)

It is clear that every Lie algebra is a Malcev algebra and every Malcev algebra is a BL-
algebra. The most important example of a non-Lie Malcev algebra is the 7-dimensional
algebra sl(O) of octonions with zero trace under the product defined by the commutator
[z,y] = xy — yx. The algebra si(O) is simple, and V.T. Filippov proved [2] that every
simple non-Lie Malcev algebra (of any dimension and of characteristic # 2, 3) is isomor-
phic to si(O). Moreover, it was proved by the first author in [4] that every simple finite
dimensional BL-algebra over a field of characteristic 0 is a Malcev algebra, that is, is a
Lie algebra or is isomorphic to sl(O).

The last author in [9] investigated prime Malcev superalgebras and proved that every
non-trivial (that is, with nonzero odd part) prime Malcev superalgebra is a Lie one.

In this paper we continue the study of simple binary Lie superalgebras started in [6].

A Zs-graded algebra B = By @ By is called a binary-Lie superalgebra (SBL-algebra)
if it satisfies the following super-identities:

2y = —(~1)"ya,
SBL(z,y, z,t) := (zy.2)t — z(y.2t)

+ (=)™ {y(zz.t) + y(x.2t) — (y.x2)t)}
+ (=1 (yt.z) — (zy.t)z — (x.yt)z} =0,
where z € {0, 1} stands for the parity of a homogeneous element z: z =i iff z € B;.

The problem of classification of finite dimensional simple SB L-algebras over the field
C is open. We know a unique example of simple non-Malcev SBL-algebra B = By ® Bj.
It has dimension two with dimg By = dimg By = 1 (see [1]).

Conjecture 1.1. Let B = By @ By be a finite dimensional simple SBL-algebra over the
field C and dim By # 0. Then B is a simple Lie superalgebra or dim B = 2.

We propose the following strategy for proving Conjecture 1.1 in four steps:
1. Reduction to the case when By is solvable.

2. Reduction to the case when By is nilpotent.
3. Reduction to the case when By is abelian.
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4. To prove Conjecture 1.1 for abelian even part.

In this paper we prove that if By # 0 and B is not a Lie superalgebra then the even
part By of B is solvable. Hence we realize the first step of the above strategy.

Note that in Conjecture 1.1 all the conditions: a) basic field is of characteristic 0; b) it
is algebraically closed; ¢) the superalgebra has finite dimension, are important even in
the case of abelian even part, as we showed in the paper [6].

2. Structure of By

Recall the results on the structure of finite dimensional BL-algebras from [4], [5].

Theorem 2.1. Let P be a finite dimensional BL-algebra over the field C with the solvable
radical G = G(P). Then P contains a central ideal R(P) such that

(i) there exists a subalgebra S of P containing R(P) such that
P/R(P)=S/R(P)® G/R(P), a vector space direct sum,

where S/R(P) is a semisimple Malcev algebra and G/R(P) is a completely reducible
Malcev S/R(P)-module;
(i1) R(P) annihilates every finite dimensional binary-Lie P-module.

Corollary 2.1. Let B = By @ By be a finite dimensional simple SBL-algebra over the
field C and By # 0. Then

(ii) Bo = P®G(By), where P is a semisimple Malcev algebra and G(By) is a completely
reducible Malcev P-module.

Proof. Assume that R(By) # 0. Since By is a finite dimensional binary-Lie Bp-module,
by item (ii) of Theorem 2.1 we get B; R(By) = 0. Hence R(By) is an abelian ideal of B
and R(By) = 0. Now item (ii) of the Corollary follows from item (i) of Theorem 2.1. O

3. Supermodules over B L-algebra and its products

Recall the notion of a tensor algebra of a bimodule (see, for instance, [7]). Let A
be a (super)algebra in a variety M and V be a (super)bimodule over A in the variety
M. Then the tensor algebra A[V] of the bimodule V is defined as the quotient algebra
Fm[A®V]/1, where Faq[A®V] is the free algebra in M over the vector space A@V and
I is its ideal generated by the set {axb—ab, axv—a-v,v¥a—v-a|a,b€ A, v € V}. Here
x and - stand for multiplication in the free algebra and action of A on V respectively.
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Observe that the generators of the ideal I are homogeneous with respect to V, hence
we have

AlV] = a2V,

where V(© = A V() = V and V@ is the A-submodule of A[V] generated by all
monomials that contain ¢ elements from V.
Let now V =U ® W be a direct sum of A-bimodules U and W. Then we have

VO = U@ g W® @ (UW)4 @ (WU) a4,

where (UW) 4 denotes the A-subbimodule generated by the set UW. We will denote this
subbimodule as UQW and will call it the tensor product of the A-bimodules U and W.

Let A be an M-algebra and V be an M-bimodule over A. We can associate with V'
two M-superbimodules over A: Viyep, and V44, where

(‘/even)o = V) (‘/even)l = Oa (Vodd)O = Oa (Vodd)l =V.
Clearly, Vepen = Voga = V as A-bimodules.

Proposition 3.1. Let S be a BL-algebra and V,W be BL-modules over S. Then we have
the isomorphism of S-modules

V;zven®Wodd = Vodd®Weven = (V®W)odd7
V:—:ven®Weven = odd®Wodd = (V®W)evena

where the first two tensor products in both lines are considered as products of supermod-
ules.

Proof. Observe that in construction of the (super)product V&W only the identities
SBL(z,y, z,t) = 0 are used where at least two arguments are taken from S and at most
one element from each of V' and W is taken. Moreover, when we have v € V and w € W
among the arguments x,y, z,t then the remaining elements, say, a,b belong to S, and
due to super-anticommutativity our identity may be rewritten in such a way that in all
the monomials v precede w. For example,

SBL(a,b,v,w) = (abv)w — a(b.ow)

+ b(av.w) 4+ b(a.vw) — (b.av)w)

+ a(bv.w) — (ab.v)w — (a.bv)w = 0,
SBL(w,a,v,b) = (—1)""((va.w)b — v(a.wb)

+ a(vw.b) + a(v.wb) — (a.vw)b)

+ v(aw.b) — (va.w)b — (v.aw)b) = 0,
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where the sign (—1)"% can be eliminated. All these identities are just versions of the full
linearization of the identity

(zy-x)y + (yz - y)xr =0,

which is equivalent to (1). Therefore, the parity of the elements v, w do not matter, and
all the considered tensor products are isomorphic, as S-modules, to V&W. This proves
the proposition. 0O

From this proposition and [4, Lemmas 5,6], we get the following useful corollary.

Corollary 3.1. Let B be a finite dimensional SBL-algebra over C and S = sly(C) C By
be a subalgebra. Then for every homogeneous Lie S-submodules V' and W of B we get
(vw)a = (va)w + v(wa) for anya € S,veV, weW.

Recall the structure of irreducible binary Lie modules over the Lie algebra S = si(2, C)
with the basis {A, H, X | AX = H AH =2A, XH = —2X} (see [4]).

Every finite dimensional irreducible S-module is either a Lie module L,, with a basis
{v_pn, Voa—p, ..., Vp—2, v} and the following S-action for i > —n,j > —n, k > —n:

k+2)(k—
vi-H:ivi,vj-X:vj,g,vk-A:(n+ +4)( n)vk+2,v,n~X:0,

or is isomorphic to the 2-dimensional non-Lie Malcev module My = C-m_g + C - mo
with the following action of S:

TTL_Q'AA:T?’LQ')(:O7 m_2~X:2m2, mg'A:me_Q, mZH:zml
We will also need the following binary Lie module over S from [4]. Let V, U be vector
spaces, V be an isomorphic copy of V with the isomorphism v — v, and let the following
linear mappings be defined:
a: VeV U, p:VaV-U.

Then the direct vector space sum V &V @ U with the following action of S

vH = 2v, vH = —2v,
vA = =20+ a(v),

5X =20 + B(v),
vA = a(v), vX = B(v),
U.S=0,
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for v € V, forms a binary Lie module which is called a module of type (n,m, «, 3), where
m=dimU, n=dimV.

It is easy to see that if W is an S-module of type (m,n, «, 3) with a = = 0 then W
is a direct sum of n Malcev modules Ms and of m one-dimensional modules Lg.

The following proposition follows from the results of [4] and Proposition 3.1.

Proposition 3.2. Let S = sl(2,C) and let «, 8 € {even, odd}. Then

(Z) (Ln)a®(M2)[3 =01ifn#2;

(i4) (Lp)a®(Lm)s is a Lie S-module;

(i%i) (L2)a®(Ma2)s = (Ms)., where v € {even, odd} is uniquely defined by «, 3. More-
over, if v_g, Vg, Vo and m_o, my are canonical bases of Lo and My, respectively, then
the elements t_g = va®mMa, ty = —V_9®m_o form a canonical base Of(Lg)a®(M2)5
as a module of type M.

4. Structure of B as an S-module

In this section we prove the following

Proposition 4.1. Let B = By @& By be a simple finite dimensional SBL-algebra over the
field C such that By # 0, B is not a Lie superalgebra, and By is not solvable. Then By
contains a simple Lie subalgebra S = s1(2,C), and B = (32, @V;) ® (3°; @Wj), where
all Vi 2 Ly and all W; = Ms.

We will need the following lemmas.

Lemma 4.1. Let B be a finite dimensional SBL-algebra over C and S = sly(C) C By be
a subalgebra. Then B is a completely reducible S-module.

Proof. By [4, Theorem 3], every finite dimensional BL-module V over S has the form
V=VieM,

where V; is a Lie S-module and M is a module of type (n,m,a, ). The module V;
is completely reducible, and if « = f = 0 then M is completely reducible as well.
Assume that B is not completely reducible S-module, then by the above B contains
an S-submodule I of type (n,m,a, ) with o # 0 or 8 # 0. Denote Z = a(I) + 8(I),
then Z - S = 0 by definition of o and 5. It is also clear that Z = Zy @ Z;, where
Z; =ZNB;, i =0,1. By [4, lemmas 7, 8, 10] and Proposition 3.1 we have Z;©B; = 0
for all ¢,j = 0,1. (Though lemmas 7, 8, 10 in [4] were proved for some particular values
of n,m of modules of type (n,m,«, 3), the proofs in fact are valid for arbitrary n,m.)
As a corollary, we have Z;B; = 0 and eventually ZB = 0. Since B is simple, this implies
Z = 0. Therefore, we have « = f = 0 and B is completely reducible. O
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Lemma 4.2. Let B = By & By be a finite dimensional SBL-algebra over C, S ~ sly(C)
be a subalgebra of By and B a Lie S-module. Then the ideal of B generated by S is a
Lie superalgebra.

Proof. Let B=3", ®B be a decomposition of B into a sum of eigen-superspaces with
respect to H, that is, B®) = {v € B|v- H = iv}. Choose homogeneous v € B, w €
BUY) y € B®) then for any a € S by the super-linearization of (1) we have

Js(ua,v,w) + (=1)" J,(va, u,w) + (—=1)""Js(vw, v, a)
+ (=)D (vw, u, a) = 0,

where Jg(v,w,u) = vw - u — (—1)"%vu - w — v - wu is the super-jacobian of the elements

v, w,u. By Corollary 3.1 we have

Js(uw,v,a) = (uw - v)a + (a - uvw)v + (—=1)"FFD (va) (uw)
= (ua - w)v + (u - wa)v + (vw)(va)

+ (au-w+u - aw)v — (vw)(va) = 0.
Therefore, we have
Ts(ua, v, w) + (=1)""Js(va, u,w) = 0. (2)

Assume first that among the numbers 4, j, k there are at least two different, say, i # k.
Substituting a = H in (2), we get

0=Js(u- Hv,w)— Js(u,v- Hw) = (k—1i)Js(v,w,u),
which implies Js(u, v, w) = 0.
Let now i = j = k > 0. Then there exists t € B(~2) such that v = t - A, and
substituting u = t,a = A in (2), we get

Js(u,v,w) = Jg(t- A,v,w) = J(t,v- A, w).

Since t € BU=2) v - A € BU*?) by the previous case J,(u,v,w) = 0.
Furthermore, let i = j = k < 0, then there exists ¢ € B(*+2 such that u = ¢ - X.
Substituting a = X, u =t in (2), we get

Js(u,v,w) = Jo(t - X, v,w) = Js(t, v X, w).
Since t € BU+?) ¢ . X € B(~2) we again obtain J,(u, v, w) = 0.

Finally, consider the case i = j = k = 0. We may write u = u; + us, where for
uy there exists t € B(-2) such that u; = t - A, and us - S = 0. For uy, as before, we
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have Jg(u1,v,w) = Js(t - A,v,w) = 0. Therefore, it remains to consider the case when
w,v,w € BO andu-S=v-S=w-9=0.

Note that if I is the ideal, generated by S, then I = 3}, SB'. Here SB" =
S, SB*1 = (SBY)B. Let u € SB*\ SB*~! C I, we prove that u = 2 j40 @jb—j, where

€ BU) b_; € B9,

We will use induction on s. It is clear that s > 0 since uS = 0. If s = 1 then
u = Ab_5 + Xby, which gives the base of the induction. Hence u = 3, a;b_;, where
aj € SB* ! and a; € BU), b_j € B9 Assume first that agS = 0, then by induction
ap = Zj;éo cjd_j;, where ¢; € BY, d_ ;€ B9 By the previous cases, J, (¢j,d—j,B) =
0, hence

a()bo = (Z de,]‘)b() = Z(—l)gjd:j (Cjbo)dfj + ch‘(d,]‘bo)

J#0 #0 J#0

c ZBU)B(*J)

J#0

If apS # 0, then without loss of generality we may assume that there exists ¢t € B(—2)
such that ag =t - A, and we have by (2)

agby = (tA)bo = —t(boA) + (tbo)A S B(72)B(2).
Now we have by the super-linearization of (1)

(u,v,w) ZJ (a;b_j,v,w)

J#0

= Z(j:Js(vb,j,a], w) £ Js(ajw,v,b_;) £ Js(vw, aj,b_;))
370

EZJ J)B j),B(O)):O
J#0

Therefore, J,(INB® B, B) =0. Since I = IN B + > iz0 B this finishes the proof
of the lemma. 0O

Lemma 4.3. In the notations of Lemma 4.2 (without assumption that B is a Lie S-
module) let V C B be an irreducible Lie S-module of type Ly, n # 2, and I be the ideal
generated by V. Then I is a Lie S-module.

Proof. First we prove that I - My = 0, where My C B is a non-Lie S-module of type M,
with a canonical basis {mg, m_s}. By Proposition 3.2, V- Ms = 0. Hence, if V- W # 0
for some irreducible S-module W, then W is a Lie S-module.

Let us prove that (V - W)M; = 0. Recall that B is a completely reducible S-module
(see Lemma 4.1). Hence by Proposition 3.2(ii), V- W = ), ®V;, where V; are irreducible
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Lie S-modules. If V; 2 Ls then V; - My = 0 by Proposition 3.2(i). Let Vi = Ly. Then for
some v € V,u € W, such that vH = iv,uH = ju,i+ j = 2, by Proposition 3.2(iii) we
have vu -mo = t_s, where t_o, t_2X form a basis of an irreducible non-Lie S-module of
type Ms. Observe that by Proposition 3.2 we have vws = uwsv = 0. Now by applying
the defining identity SBL(z,y, z,t) = 0 we have

0 = vuws H + vwouH + Huwsv £ Hwouv

+ (=1)""(uwvHws + uHvws) + wy Hou + wovHu

= —2vuws + (—1)"*(2uvwsy + juvws) = —(j + 4)t _o;
0 = vuHwy + vHuws £ wouHv £ woHuv

+ (=1) " uvwy H + uwevH £ wavu 4 vwau

= 2uuws + ivuws — 2(—1)" uvws = (i + 4)t_s.

Hence i = j = —4, a contradiction.

We proved that (VW)My; = 0 for any irreducible S-submodule W of B. As-
sume that (...(VWy)...)W, )Mz = 0 for any irreducible S-submodules W1, ...,W,, of
B, n > 0. Let (.(VW)..)W,) = >, ®Uy, where U;, are irreducible Lie S-modules
and UpM; = 0. Hence every U, has the same property as V, and we can prove as
above that (UpW,11)My = 0 for every irreducible S-submodule W, of B. Then
((Zk @Uk)Wn+1)M2 = ((VWl))Wn)Wn+1))M2 =0.

Hence IM; = 0. Since I = ) (...(VWh1)...)W,) where all W; are Lie S-modules, then
I is a Lie S-module. O

Proof of Proposition 4.1. Assume that B as S-module contains an irreducible Lie sub-
module V of type L,,, n # 2. Then the ideal I generated by V' would be a non-zero ideal
of B. Since B is simple then I = B, and by Lemma 4.3 B is a Lie S-module. Then by
Lemma 4.2 B is a Lie superalgebra, a contradiction. 0O

5. The main theorem

Theorem 5.1. Let B = By ® B; be a finite dimensional simple SBL-algebra over the field
C. If By # 0 and B is not a Lie superalgebra, then the even part By of B is solvable.

Proof. Assume that By is not solvable and B is not a Lie superalgebra, then by Propo-
sition 4.1 we get that By contains a simple Lie subalgebra S = sl(2,C) such that
B = (3 eVi) ® (O, ®W;), where V; & Ly and W; = M, for all i,j. Consider the
Grassmann envelope M = I'(B) = By ® I'g @ By ® I'1, of the superalgebra B, where
' =Ty @T; is the Grassmann algebra. Then I'(B) is a binary Lie algebra. By construc-
tion, the BL-algebra M has a subalgebra Sy = S ® C1 ~ sl3(C), where 1 is the unit
element of the Grassmann algebra I'. Moreover, the algebra M as an Sp-module has a
decomposition into a direct sum of 3- and 2-dimensional Sy-modules. By Theorem 1 of
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[5], M is a Malcev algebra. Hence B is a Malcev superalgebra, but by [9] any non-trivial
simple Malcev superalgebra is a Lie superalgebra. 0O
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