

Simple binary Lie and non-Lie superalgebra has solvable even part

A. Grishkov^a, M. Rasskazova^b, I. Shestakov^{a,c,*}

^a University of São Paulo, Brazil

^b UFABC, São Paulo, Brazil

^c Sobolev Institute of Mathematics, Novosibirsk, Russia

ARTICLE INFO

Article history:

Received 14 November 2022

Available online xxxx

Communicated by Alberto Elduque

To the memory of Professor Georgia Benkart

Keywords:

Binary Lie algebra

Simple superalgebra

Irreducible module

Malcev algebra

Solvable algebra

ABSTRACT

We prove that every simple finite dimensional binary Lie superalgebra over the complex numbers field \mathbf{C} with non-zero odd part is either a Lie superalgebra or has a solvable even part.

© 2023 Elsevier Inc. All rights reserved.

1. Introduction

Binary Lie algebras (*BL-algebras*) were introduced by A.I. Malcev [8] as anticommutative algebras in which any two elements generate a Lie subalgebra. This property is fulfilled in *Malcev algebras*, defined in the same paper (under the name of *Moufang-Lie algebras*) as the algebras satisfying the identities

* Corresponding author.

E-mail address: shestak@ime.usp.br (I. Shestakov).

$$xy = -yx,$$

$$J(xy, z, x) = J(y, z, x)x,$$

where $J(x, y, z) = (xy)z + (yz)x + (zx)y$ denotes the *jacobian* of the elements x, y, z .

Laterly, A.T. Gainov [3] characterized binary Lie algebras by identities: an anticommutative algebra is a binary Lie algebra if and only if it satisfies the identity

$$J(xy, x, y) = 0. \quad (1)$$

It is clear that every Lie algebra is a Malcev algebra and every Malcev algebra is a *BL*-algebra. The most important example of a non-Lie Malcev algebra is the 7-dimensional algebra $sl(\mathbf{O})$ of octonions with zero trace under the product defined by the *commutator* $[x, y] = xy - yx$. The algebra $sl(\mathbf{O})$ is simple, and V.T. Filippov proved [2] that every simple non-Lie Malcev algebra (of any dimension and of characteristic $\neq 2, 3$) is isomorphic to $sl(\mathbf{O})$. Moreover, it was proved by the first author in [4] that every simple finite dimensional *BL*-algebra over a field of characteristic 0 is a Malcev algebra, that is, is a Lie algebra or is isomorphic to $sl(\mathbf{O})$.

The last author in [9] investigated prime Malcev superalgebras and proved that every non-trivial (that is, with nonzero odd part) prime Malcev superalgebra is a Lie one.

In this paper we continue the study of simple binary Lie superalgebras started in [6].

A \mathbf{Z}_2 -graded algebra $B = B_0 \oplus B_1$ is called a *binary-Lie superalgebra (SBL-algebra)* if it satisfies the following super-identities:

$$xy = -(-1)^{\bar{x}\bar{y}}yx,$$

$$SBL(x, y, z, t) := (xy.z)t - x(y.zt)$$

$$+ (-1)^{\bar{x}\bar{y}}\{y(xz.t) + y(x.zt) - (y.xz)t\}$$

$$+ (-1)^{\bar{z}\bar{t}}\{x(yt.z) - (xy.t)z - (x.yt)z\} = 0,$$

where $\bar{z} \in \{0, 1\}$ stands for the parity of a homogeneous element z : $\bar{z} = i$ iff $z \in B_i$.

The problem of classification of finite dimensional simple *SBL*-algebras over the field \mathbf{C} is open. We know a unique example of simple non-Malcev *SBL*-algebra $B = B_0 \oplus B_1$. It has dimension two with $\dim_{\mathbf{C}} B_0 = \dim_{\mathbf{C}} B_1 = 1$ (see [1]).

Conjecture 1.1. *Let $B = B_0 \oplus B_1$ be a finite dimensional simple *SBL*-algebra over the field \mathbf{C} and $\dim B_1 \neq 0$. Then B is a simple Lie superalgebra or $\dim B = 2$.*

We propose the following strategy for proving Conjecture 1.1 in four steps:

1. Reduction to the case when B_0 is solvable.
2. Reduction to the case when B_0 is nilpotent.
3. Reduction to the case when B_0 is abelian.

4. To prove Conjecture 1.1 for abelian even part.

In this paper we prove that if $B_1 \neq 0$ and B is not a Lie superalgebra then the even part B_0 of B is solvable. Hence we realize the first step of the above strategy.

Note that in Conjecture 1.1 all the conditions: a) basic field is of characteristic 0; b) it is algebraically closed; c) the superalgebra has finite dimension, are important even in the case of abelian even part, as we showed in the paper [6].

2. Structure of B_0

Recall the results on the structure of finite dimensional BL -algebras from [4], [5].

Theorem 2.1. *Let P be a finite dimensional BL -algebra over the field \mathbf{C} with the solvable radical $G = G(P)$. Then P contains a central ideal $R(P)$ such that*

(i) *there exists a subalgebra S of P containing $R(P)$ such that*

$$P/R(P) = S/R(P) \oplus G/R(P), \text{ a vector space direct sum,}$$

where $S/R(P)$ is a semisimple Malcev algebra and $G/R(P)$ is a completely reducible Malcev $S/R(P)$ -module;

(ii) *$R(P)$ annihilates every finite dimensional binary-Lie P -module.*

Corollary 2.1. *Let $B = B_0 \oplus B_1$ be a finite dimensional simple SBL -algebra over the field \mathbf{C} and $B_1 \neq 0$. Then*

- (i) $R(B_0) = 0$,
- (ii) $B_0 = P \oplus G(B_0)$, where P is a semisimple Malcev algebra and $G(B_0)$ is a completely reducible Malcev P -module.

Proof. Assume that $R(B_0) \neq 0$. Since B_1 is a finite dimensional binary-Lie B_0 -module, by item (ii) of Theorem 2.1 we get $B_1 R(B_0) = 0$. Hence $R(B_0)$ is an abelian ideal of B and $R(B_0) = 0$. Now item (ii) of the Corollary follows from item (i) of Theorem 2.1. \square

3. Supermodules over BL -algebra and its products

Recall the notion of a *tensor algebra of a bimodule* (see, for instance, [7]). Let A be a (super)algebra in a variety \mathcal{M} and V be a (super)bimodule over A in the variety \mathcal{M} . Then the tensor algebra $A[V]$ of the bimodule V is defined as the quotient algebra $F_{\mathcal{M}}[A \oplus V]/I$, where $F_{\mathcal{M}}[A \oplus V]$ is the free algebra in \mathcal{M} over the vector space $A \oplus V$ and I is its ideal generated by the set $\{a * b - ab, a * v - a \cdot v, v * a - v \cdot a \mid a, b \in A, v \in V\}$. Here $*$ and \cdot stand for multiplication in the free algebra and action of A on V respectively.

Observe that the generators of the ideal I are homogeneous with respect to V , hence we have

$$A[V] = \bigoplus_{i=0}^{\infty} V^{(i)},$$

where $V^{(0)} = A$, $V^{(1)} = V$, and $V^{(i)}$ is the A -submodule of $A[V]$ generated by all monomials that contain i elements from V .

Let now $V = U \oplus W$ be a direct sum of A -bimodules U and W . Then we have

$$V^{(2)} = U^{(2)} \oplus W^{(2)} \oplus (UW)_A \oplus (WU)_A,$$

where $(UW)_A$ denotes the A -subbimodule generated by the set UW . We will denote this subbimodule as $U \hat{\otimes} W$ and will call it *the tensor product* of the A -bimodules U and W .

Let A be an \mathcal{M} -algebra and V be an \mathcal{M} -bimodule over A . We can associate with V two \mathcal{M} -superbimodules over A : V_{even} and V_{odd} , where

$$(V_{even})_0 = V, (V_{even})_1 = 0; (V_{odd})_0 = 0, (V_{odd})_1 = V.$$

Clearly, $V_{even} \cong V_{odd} \cong V$ as A -bimodules.

Proposition 3.1. *Let S be a BL-algebra and V, W be BL-modules over S . Then we have the isomorphism of S -modules*

$$\begin{aligned} V_{even} \hat{\otimes} W_{odd} &\cong V_{odd} \hat{\otimes} W_{even} \cong (V \hat{\otimes} W)_{odd}, \\ V_{even} \hat{\otimes} W_{even} &\cong V_{odd} \hat{\otimes} W_{odd} \cong (V \hat{\otimes} W)_{even}, \end{aligned}$$

where the first two tensor products in both lines are considered as products of supermodules.

Proof. Observe that in construction of the (super)product $V \hat{\otimes} W$ only the identities $SBL(x, y, z, t) = 0$ are used where at least two arguments are taken from S and at most one element from each of V and W is taken. Moreover, when we have $v \in V$ and $w \in W$ among the arguments x, y, z, t then the remaining elements, say, a, b belong to S , and due to super-anticommutativity our identity may be rewritten in such a way that in all the monomials v precede w . For example,

$$\begin{aligned} SBL(a, b, v, w) &= (ab.v)w - a(b.vw) \\ &\quad + b(av.w) + b(a.vw) - (b.av)w \\ &\quad + a(bv.w) - (ab.v)w - (a.bv)w = 0, \\ SBL(w, a, v, b) &= (-1)^{\bar{v}\bar{w}}((va.w)b - v(a.wb) \\ &\quad + a(vw.b) + a(v.wb) - (a.vw)b) \\ &\quad + v(aw.b) - (va.w)b - (v.aw)b) = 0, \end{aligned}$$

where the sign $(-1)^{\bar{v}\bar{w}}$ can be eliminated. All these identities are just versions of the full linearization of the identity

$$(xy \cdot x)y + (yx \cdot y)x = 0,$$

which is equivalent to (1). Therefore, the parity of the elements v, w do not matter, and all the considered tensor products are isomorphic, as S -modules, to $V \hat{\otimes} W$. This proves the proposition. \square

From this proposition and [4, Lemmas 5,6], we get the following useful corollary.

Corollary 3.1. *Let B be a finite dimensional SBL-algebra over \mathbf{C} and $S \cong sl_2(\mathbf{C}) \subset B_0$ be a subalgebra. Then for every homogeneous Lie S -submodules V and W of B we get $(vw)a = (va)w + v(wa)$ for any $a \in S, v \in V, w \in W$.*

Recall the structure of irreducible binary Lie modules over the Lie algebra $S = sl(2, \mathbf{C})$ with the basis $\{A, H, X \mid AX = H, AH = 2A, XH = -2X\}$ (see [4]).

Every finite dimensional irreducible S -module is either a Lie module L_n with a basis $\{v_{-n}, v_{2-n}, \dots, v_{n-2}, v_n\}$ and the following S -action for $i \geq -n, j > -n, k \geq -n$:

$$v_i \cdot H = iv_i, v_j \cdot X = v_{j-2}, v_k \cdot A = \frac{(n+k+2)(k-n)}{4}v_{k+2}, v_{-n} \cdot X = 0,$$

or is isomorphic to the 2-dimensional non-Lie Malcev module $M_2 = \mathbf{C} \cdot m_{-2} + \mathbf{C} \cdot m_2$ with the following action of S :

$$m_{-2} \cdot A = m_2 \cdot X = 0, m_{-2} \cdot X = 2m_2, m_2 \cdot A = -2m_{-2}, m_i \cdot H = im_i.$$

We will also need the following binary Lie module over S from [4]. Let V, U be vector spaces, \bar{V} be an isomorphic copy of V with the isomorphism $v \mapsto \bar{v}$, and let the following linear mappings be defined:

$$\alpha : V \oplus \bar{V} \rightarrow U, \quad \beta : V \oplus \bar{V} \rightarrow U.$$

Then the direct vector space sum $V \oplus \bar{V} \oplus U$ with the following action of S

$$vH = 2v, \bar{v}H = -2\bar{v},$$

$$vA = -2\bar{v} + \alpha(v),$$

$$\bar{v}X = 2v + \beta(\bar{v}),$$

$$\bar{v}A = \alpha(\bar{v}), vX = \beta(v),$$

$$U \cdot S = 0,$$

for $v \in V$, forms a binary Lie module which is called *a module of type (n, m, α, β)* , where $m = \dim U$, $n = \dim V$.

It is easy to see that if W is an S -module of type (m, n, α, β) with $\alpha = \beta = 0$ then W is a direct sum of n Malcev modules M_2 and of m one-dimensional modules L_0 .

The following proposition follows from the results of [4] and Proposition 3.1.

Proposition 3.2. *Let $S = sl(2, \mathbf{C})$ and let $\alpha, \beta \in \{\text{even, odd}\}$. Then*

- (i) $(L_n)_\alpha \hat{\otimes} (M_2)_\beta = 0$ if $n \neq 2$;
- (ii) $(L_n)_\alpha \hat{\otimes} (L_m)_\beta$ is a Lie S -module;
- (iii) $(L_2)_\alpha \hat{\otimes} (M_2)_\beta \cong (M_2)_\gamma$, where $\gamma \in \{\text{even, odd}\}$ is uniquely defined by α, β . Moreover, if v_{-2}, v_0, v_2 and m_{-2}, m_2 are canonical bases of L_2 and M_2 , respectively, then the elements $t_{-2} = v_2 \hat{\otimes} m_2, t_2 = -v_{-2} \hat{\otimes} m_{-2}$ form a canonical base of $(L_2)_\alpha \hat{\otimes} (M_2)_\beta$ as a module of type M_2 .

4. Structure of B as an S -module

In this section we prove the following

Proposition 4.1. *Let $B = B_0 \oplus B_1$ be a simple finite dimensional SBL-algebra over the field \mathbf{C} such that $B_1 \neq 0$, B is not a Lie superalgebra, and B_0 is not solvable. Then B_0 contains a simple Lie subalgebra $S \cong sl(2, \mathbf{C})$, and $B = (\sum_i \oplus V_i) \oplus (\sum_j \oplus W_j)$, where all $V_i \cong L_2$ and all $W_j \cong M_2$.*

We will need the following lemmas.

Lemma 4.1. *Let B be a finite dimensional SBL-algebra over \mathbf{C} and $S \cong sl_2(\mathbf{C}) \subset B_0$ be a subalgebra. Then B is a completely reducible S -module.*

Proof. By [4, Theorem 3], every finite dimensional BL -module V over S has the form

$$V = V_l \oplus M,$$

where V_l is a Lie S -module and M is a module of type (n, m, α, β) . The module V_l is completely reducible, and if $\alpha = \beta = 0$ then M is completely reducible as well. Assume that B is not completely reducible S -module, then by the above B contains an S -submodule I of type (n, m, α, β) with $\alpha \neq 0$ or $\beta \neq 0$. Denote $Z = \alpha(I) + \beta(I)$, then $Z \cdot S = 0$ by definition of α and β . It is also clear that $Z = Z_0 \oplus Z_1$, where $Z_i = Z \cap B_i$, $i = 0, 1$. By [4, lemmas 7, 8, 10] and Proposition 3.1 we have $Z_i \hat{\otimes} B_j = 0$ for all $i, j = 0, 1$. (Though lemmas 7, 8, 10 in [4] were proved for some particular values of n, m of modules of type (n, m, α, β) , the proofs in fact are valid for arbitrary n, m .) As a corollary, we have $Z_i B_j = 0$ and eventually $ZB = 0$. Since B is simple, this implies $Z = 0$. Therefore, we have $\alpha = \beta = 0$ and B is completely reducible. \square

Lemma 4.2. Let $B = B_0 \oplus B_1$ be a finite dimensional SBL-algebra over \mathbf{C} , $S \simeq \text{sl}_2(\mathbf{C})$ be a subalgebra of B_0 and B a Lie S -module. Then the ideal of B generated by S is a Lie superalgebra.

Proof. Let $B = \sum_i \oplus B^{(i)}$ be a decomposition of B into a sum of eigen-superspaces with respect to H , that is, $B^{(i)} = \{v \in B \mid v \cdot H = iv\}$. Choose homogeneous $v \in B^{(i)}, w \in B^{(j)}, u \in B^{(k)}$, then for any $a \in S$ by the super-linearization of (1) we have

$$\begin{aligned} J_s(ua, v, w) + (-1)^{\bar{u}\bar{v}} J_s(va, u, w) + (-1)^{\bar{v}\bar{w}} J_s(uw, v, a) \\ + (-1)^{\bar{u}(\bar{v}+\bar{w})} J_s(vw, u, a) = 0, \end{aligned}$$

where $J_s(v, w, u) = vw \cdot u - (-1)^{\bar{w}\bar{u}} vu \cdot w - v \cdot wu$ is the *super-jacobian* of the elements v, w, u . By Corollary 3.1 we have

$$\begin{aligned} J_s(uw, v, a) &= (uw \cdot v)a + (a \cdot uw)v + (-1)^{\bar{v}(\bar{u}+\bar{w})}(va)(uw) \\ &= (ua \cdot w)v + (u \cdot wa)v + (uw)(va) \\ &\quad + (au \cdot w + u \cdot aw)v - (uw)(va) = 0. \end{aligned}$$

Therefore, we have

$$J_s(ua, v, w) + (-1)^{\bar{u}\bar{v}} J_s(va, u, w) = 0. \quad (2)$$

Assume first that among the numbers i, j, k there are at least two different, say, $i \neq k$. Substituting $a = H$ in (2), we get

$$0 = J_s(u \cdot H, v, w) - J_s(u, v \cdot H, w) = (k - i)J_s(v, w, u),$$

which implies $J_s(u, v, w) = 0$.

Let now $i = j = k > 0$. Then there exists $t \in B^{(i-2)}$ such that $u = t \cdot A$, and substituting $u = t, a = A$ in (2), we get

$$J_s(u, v, w) = J_s(t \cdot A, v, w) = J_s(t, v \cdot A, w).$$

Since $t \in B^{(i-2)}$, $v \cdot A \in B^{(i+2)}$, by the previous case $J_s(u, v, w) = 0$.

Furthermore, let $i = j = k < 0$, then there exists $t \in B^{(i+2)}$ such that $u = t \cdot X$. Substituting $a = X, u = t$ in (2), we get

$$J_s(u, v, w) = J_s(t \cdot X, v, w) = J_s(t, v \cdot X, w).$$

Since $t \in B^{(i+2)}$, $v \cdot X \in B^{(i-2)}$, we again obtain $J_s(u, v, w) = 0$.

Finally, consider the case $i = j = k = 0$. We may write $u = u_1 + u_2$, where for u_1 there exists $t \in B^{(-2)}$ such that $u_1 = t \cdot A$, and $u_2 \cdot S = 0$. For u_1 , as before, we

have $J_s(u_1, v, w) = J_s(t \cdot A, v, w) = 0$. Therefore, it remains to consider the case when $u, v, w \in B^{(0)}$ and $u \cdot S = v \cdot S = w \cdot S = 0$.

Note that if I is the ideal, generated by S , then $I = \sum_i SB^i$. Here $SB^0 = S$, $SB^{i+1} = (SB^i)B$. Let $u \in SB^s \setminus SB^{s-1} \subseteq I$, we prove that $u = \sum_{j \neq 0} a_j b_{-j}$, where $a_j \in B^{(j)}$, $b_{-j} \in B^{(-j)}$.

We will use induction on s . It is clear that $s > 0$ since $uS = 0$. If $s = 1$ then $u = Ab_{-2} + Xb_2$, which gives the base of the induction. Hence $u = \sum_j a_j b_{-j}$, where $a_j \in SB^{s-1}$ and $a_j \in B^{(j)}$, $b_{-j} \in B^{(-j)}$. Assume first that $a_0S = 0$, then by induction $a_0 = \sum_{j \neq 0} c_j d_{-j}$, where $c_j \in B^{(j)}$, $d_{-j} \in B^{(-j)}$. By the previous cases, $J_s(c_j, d_{-j}, B) = 0$, hence

$$\begin{aligned} a_0 b_0 &= \left(\sum_{j \neq 0} c_j d_{-j} \right) b_0 = \sum_{j \neq 0} (-1)^{\bar{b}_j \bar{d}_{-j}} (c_j b_0) d_{-j} + \sum_{j \neq 0} c_j (d_{-j} b_0) \\ &\in \sum_{j \neq 0} B^{(j)} B^{(-j)}. \end{aligned}$$

If $a_0S \neq 0$, then without loss of generality we may assume that there exists $t \in B^{(-2)}$ such that $a_0 = t \cdot A$, and we have by (2)

$$a_0 b_0 = (tA)b_0 = -t(b_0 A) + (tb_0)A \in B^{(-2)} B^{(2)}.$$

Now we have by the super-linearization of (1)

$$\begin{aligned} J_s(u, v, w) &= \sum_{j \neq 0} J_s(a_j b_{-j}, v, w) \\ &= \sum_{j \neq 0} (\pm J_s(vb_{-j}, a_j, w) \pm J_s(a_j w, v, b_{-j}) \pm J_s(vw, a_j, b_{-j})) \\ &\in \sum_{j \neq 0} J_s(B^{(j)}, B^{(-j)}, B^{(0)}) = 0. \end{aligned}$$

Therefore, $J_s(I \cap B^{(0)}, B, B) = 0$. Since $I = I \cap B^{(0)} + \sum_{i \neq 0} B^{(i)}$, this finishes the proof of the lemma. \square

Lemma 4.3. *In the notations of Lemma 4.2 (without assumption that B is a Lie S -module) let $V \subset B$ be an irreducible Lie S -module of type L_n , $n \neq 2$, and I be the ideal generated by V . Then I is a Lie S -module.*

Proof. First we prove that $I \cdot M_2 = 0$, where $M_2 \subset B$ is a non-Lie S -module of type M_2 with a canonical basis $\{m_2, m_{-2}\}$. By Proposition 3.2, $V \cdot M_2 = 0$. Hence, if $V \cdot W \neq 0$ for some irreducible S -module W , then W is a Lie S -module.

Let us prove that $(V \cdot W)M_2 = 0$. Recall that B is a completely reducible S -module (see Lemma 4.1). Hence by Proposition 3.2(ii), $V \cdot W = \sum_i \oplus V_i$, where V_i are irreducible

Lie S -modules. If $V_i \not\cong L_2$ then $V_i \cdot M_2 = 0$ by Proposition 3.2(i). Let $V_k \cong L_2$. Then for some $v \in V, u \in W$, such that $vH = iv, uH = ju, i + j = 2$, by Proposition 3.2(iii) we have $vu \cdot m_2 = t_{-2}$, where $t_{-2}, t_{-2}X$ form a basis of an irreducible non-Lie S -module of type M_2 . Observe that by Proposition 3.2 we have $vw_2 = uw_2v = 0$. Now by applying the defining identity $SBL(x, y, z, t) = 0$ we have

$$\begin{aligned}
 0 &= vuw_2H \pm vw_2uH \pm Huw_2v \pm Hw_2uv \\
 &\quad + (-1)^{\bar{v}\bar{u}}(uvHw_2 + uHvw_2) \pm w_2Hvu \pm w_2vHu \\
 &= -2vuw_2 + (-1)^{\bar{v}\bar{u}}(2uvw_2 + juvw_2) = -(j+4)t_{-2}; \\
 0 &= vuHw_2 + vHuw_2 \pm w_2uHv \pm w_2Huv \\
 &\quad + (-1)^{\bar{v}\bar{u}}uvw_2H \pm uw_2vH \pm w_2vu \pm vw_2u \\
 &= 2vuw_2 + ivuw_2 - 2(-1)^{\bar{v}\bar{u}}uvw_2 = (i+4)t_{-2}.
 \end{aligned}$$

Hence $i = j = -4$, a contradiction.

We proved that $(VW)M_2 = 0$ for any irreducible S -submodule W of B . Assume that $(\dots(VW_1)\dots)W_n)M_2 = 0$ for any irreducible S -submodules W_1, \dots, W_n of B , $n > 0$. Let $(\dots(VW_1)\dots)W_n) = \sum_k \oplus U_k$, where U_k are irreducible Lie S -modules and $U_k M_2 = 0$. Hence every U_k has the same property as V , and we can prove as above that $(U_k W_{n+1})M_2 = 0$ for every irreducible S -submodule W_{n+1} of B . Then $((\sum_k \oplus U_k)W_{n+1})M_2 = ((\dots(VW_1)\dots)W_n)W_{n+1})M_2 = 0$.

Hence $IM_2 = 0$. Since $I = \sum_n (\dots(VW_1)\dots)W_n$ where all W_i are Lie S -modules, then I is a Lie S -module. \square

Proof of Proposition 4.1. Assume that B as S -module contains an irreducible Lie submodule V of type L_n , $n \neq 2$. Then the ideal I generated by V would be a non-zero ideal of B . Since B is simple then $I = B$, and by Lemma 4.3 B is a Lie S -module. Then by Lemma 4.2 B is a Lie superalgebra, a contradiction. \square

5. The main theorem

Theorem 5.1. *Let $B = B_0 \oplus B_1$ be a finite dimensional simple SBL -algebra over the field \mathbf{C} . If $B_1 \neq 0$ and B is not a Lie superalgebra, then the even part B_0 of B is solvable.*

Proof. Assume that B_0 is not solvable and B is not a Lie superalgebra, then by Proposition 4.1 we get that B_0 contains a simple Lie subalgebra $S \cong sl(2, \mathbf{C})$ such that $B = (\sum_i \oplus V_i) \oplus (\sum_j \oplus W_j)$, where $V_i \cong L_2$ and $W_j \cong M_2$ for all i, j . Consider the Grassmann envelope $M = \Gamma(B) = B_0 \otimes \Gamma_0 \oplus B_1 \otimes \Gamma_1$, of the superalgebra B , where $\Gamma = \Gamma_0 \oplus \Gamma_1$ is the Grassmann algebra. Then $\Gamma(B)$ is a binary Lie algebra. By construction, the BL -algebra M has a subalgebra $S_0 = S \otimes \mathbf{C}\mathbf{1} \cong sl_2(\mathbf{C})$, where $\mathbf{1}$ is the unit element of the Grassmann algebra Γ . Moreover, the algebra M as an S_0 -module has a decomposition into a direct sum of 3- and 2-dimensional S_0 -modules. By Theorem 1 of

[5], M is a Malcev algebra. Hence B is a Malcev superalgebra, but by [9] any non-trivial simple Malcev superalgebra is a Lie superalgebra. \square

Data availability

No data was used for the research described in the article.

Acknowledgments

A. Grishkov acknowledges financial support from FAPESP, grant 2018/23690-6 (Brazil)(1–3) and from RSF, grant 22-21-00745 (Russia)(4–5). M. Rasskazova acknowledges financial support from FAPESP, grant 2021/12820-9. I. Shestakov acknowledges financial support from FAPESP, grant 2018/23690-6, and CNPq, grant 304313/2019-0 (Brazil).

The authors thank the referee for pointing out a gap in the proof of the assertion of Lemma 4.1 in the first version of the paper.

References

- [1] M. Arenas, I.P. Shestakov, On speciality of binary-Lie algebras, *J. Algebra Appl.* 10 (2) (2011) 257–268.
- [2] V.T. Filippov, Central simple Malcev algebras (Russian), *Algebra Log.* 15 (2) (1976) 235–242.
- [3] A.T. Gainov, Identical relations for binary Lie rings (Russian), *Usp. Mat. Nauk* 12 (3(75)) (1957) 141–146.
- [4] A.N. Grishkov, Structure and representations of binary-Lie algebras (Russian), *Izv. Akad. Nauk SSSR, Ser. Mat.* 44 (5) (1980) 999–1030; English Transl.: *Izv. Math.* 17 (2) (1981) 243–269.
- [5] A.N. Grishkov, On the conjugacy of Levi factors in finite dimensional binary-Lie algebras (Russian), *Izv. Akad. Nauk SSSR, Ser. Mat.* 50 (2) (1986) 313–342; English Transl.: *Izv. Math.* 28 (2) (1987) 305–334.
- [6] A.N. Grishkov, I.P. Shestakov, M.N. Rasskazova, New examples of binary Lie superalgebras and algebras (Russian), *Algebra Log.* 60 (6) (2021) 557–568.
- [7] I. Kashuba, S. Ovsienko, I. Shestakov, Representation type of Jordan algebras, *Adv. Math.* 226 (1) (2011) 385–418.
- [8] A.I. Malcev, Analytic loops (Russian), *Mat. Sb.* 36(78) (3) (1955) 569–576.
- [9] I.P. Shestakov, Prime Malcev superalgebras (Russian), *Mat. Sb.* 182 (9) (1991) 1357–1366; English Transl.: *Sb. Math.* 74 (1) (1993) 101–110.